Алгебру называют нередко «арифметикой семи действий», подчеркивая, что к четырем общеизвестным математическим операциям она присоединяет три новых: возведение в степень и два ему обратных действия.
Наши алгебраические беседы начнутся с «пятого действия» – возведения в степень.
Вызвана ли потребность в этом новом действии практической жизнью? Безусловно. Мы очень часто сталкиваемся с ним в реальной действительности. Вспомним о многочисленных случаях вычисления площадей и объемов, где обычно приходится возводить числа во вторую и третью степени. Далее: сила всемирного тяготения, электростатическое и магнитное взаимодействия, свет, звук ослабевают пропорционально второй степени расстояния. Продолжительность обращения планет вокруг Солнца (и спутников вокруг планет) связана с расстояниями от центра обращения также степенной зависимостью: вторые степени времен обращения относятся между собою, как третьи степени расстояний.
Не надо думать, что практика сталкивает нас только со вторыми и третьими степенями, а более высокие показатели существуют только в упражнениях алгебраических задачников. Инженер, производя расчеты на прочность, сплошь и рядом имеет дело с четвертыми степенями, а при других вычислениях (например, диаметра паропровода) – даже с шестой степенью. Исследуя силу, с какой текучая вода увлекает камни, гидротехник наталкивается на зависимость также шестой степени: если скорость течения в одной реке вчетверо больше, чем в другой, то быстрая река способна перекатывать по своему ложу камни в 4>6, т. е. в 4096 раз более тяжелые, чем медленная.
С еще более высокими степенями встречаемся мы, изучая зависимость яркости раскаленного тела – например, нити накала в электрической лампочке от температуры. Общая яркость растет при белом калении с двенадцатой степенью температуры, а при красном – с тридцатой степенью температуры («абсолютной», т. е. считаемой от минус 273°). Это означает, что тело, нагретое, например, от 2000° до 4000° (абсолютных), т. е. в два раза сильнее, становится ярче в 2>12, иначе говоря, более чем в 4000 раз. О том, какое значение имеет эта своеобразная зависимость в технике изготовления электрических лампочек, мы еще будем говорить в другом месте.
Никто, пожалуй, не пользуется так широко пятым математическим действием, как астрономы. Исследователям Вселенной на каждом шагу приходится встречаться с огромными числами, состоящими из одной-двух значащих цифр и длинного ряда нулей. Изображение обычным образом подобных числовых исполинов, справедливо называемых «астрономическими числами», неизбежно вело бы к большим неудобствам, особенно при вычислениях. Расстояние, например, до туманности Андромеды, написанное обычным порядком, представляется таким числом километров:
95 000 000 000 000 000 000.
При выполнении астрономических расчетов приходится к тому же выражать зачастую небесные расстояния не в километрах или более крупных единицах, а в сантиметрах. Рассмотренное расстояние изобразится в этом случае числом, имеющим на пять нулей больше:
9 500 000 000 000 000 000 000 000.
Массы звезд выражаются еще бóльшими числами, особенно если их выражать, как требуется для многих расчетов, в граммах. Масса нашего Солнца в граммах равна:
1 983 000 000 000 000 000 000 000 000 000 000.
Легко представить себе, как затруднительно было бы производить вычисления с такими громоздкими числами и как легко было бы при этом ошибиться. А ведь здесь приведены далеко еще не самые большие астрономические числа.
Пятое математическое действие дает вычислителям простой выход из этого затруднения. Единица, сопровождаемая рядом нулей, представляет собой определенную степень десяти: