В последние десятилетия мировое энергопотребление продолжает неуклонно расти. По данным Международного энергетического агентства (МЭА), в 2022 году объем вырабатываемой электроэнергии достиг 26 000 ТВт·ч, что на 3% выше, чем в 2021 году. Прирост связан как с восстановлением экономики после пандемии COVID-19, так и с ростом энергопотребления в странах с развивающимися рынками, таких как Индия и Бразилия. В то же время, около 60% выработки электроэнергии по-прежнему обеспечивается за счет угля, нефти и природного газа, что существенно влияет на уровень выбросов углекислого газа.
Климатическая повестка, изложенная в Парижском соглашении 2015 года, предусматривает снижение глобальных выбросов CO₂ до 2030 года на 45% по сравнению с уровнями 2010 года. Достижение таких целей невозможно без активного внедрения возобновляемых источников энергии, среди которых солнечная энергетика занимает особое место. Солнечная энергия – это практически неисчерпаемый ресурс, способный обеспечить до 70% мирового энергопотребления, согласно исследованию Стэнфордского университета.
Тем не менее, широкомасштабное использование солнечных технологий сталкивается с рядом проблем, среди которых наиболее значимыми являются нестабильность выработки электроэнергии и сложность интеграции солнечных электростанций в существующие энергосистемы. Например, исследования Национальной лаборатории возобновляемой энергии США показывают, что разница в уровнях выработки между солнечными парками в засушливый сезон и период облачности может достигать 50%. Это ставит перед энергокомпаниями задачу точного прогнозирования генерации и эффективного распределения ресурсов.
В данном случае на помощь приходит искусственный интеллект (ИИ). Алгоритмы машинного обучения и прогнозной аналитики позволяют анализировать большие объемы данных о погодных условиях, производительности солнечных панелей и уровнях энергопотребления в режиме реального времени. По данным консалтинговой компании McKinsey, внедрение ИИ в солнечную энергетику может увеличить общую эффективность генерации на 20%, одновременно сокращая операционные затраты на 15%.
На международной арене технологии ИИ находят применение в крупнейших проектах солнечной энергетики. В Китае, являющемся лидером по количеству установленных солнечных панелей (390 ГВт в 2023 году), используются системы искусственного интеллекта для управления сетями, охватывающими более 500 миллионов потребителей. В Индии алгоритмы машинного обучения внедрены в программу KUSUM, которая позволяет использовать солнечные фермы для подачи электроэнергии в сельские районы, где ранее наблюдалась нехватка ресурсов.
Европейские страны также активно инвестируют в технологии ИИ для управления возобновляемыми источниками энергии. В Германии, где доля солнечной энергии составляет 18% от общего объема генерации, используются цифровые платформы на основе искусственного интеллекта, которые обеспечивают оптимальное распределение энергии в зависимости от спроса и предложения. Такие решения позволяют снизить уровень потерь энергии на транспортировку на 12% и сократить выбросы углекислого газа на 8 миллионов тонн ежегодно.
Кроме того, ИИ играет ключевую роль в разработке новых солнечных панелей с использованием материалов следующего поколения. Технологии глубокого обучения помогают анализировать свойства гибридных материалов и улучшать их фоточувствительность, что способствует созданию более эффективных солнечных элементов.
Взаимодействие технологий искусственного интеллекта и солнечной энергетики не только предоставляет возможности для оптимизации существующих систем, но и формирует новые рынки. Согласно отчету Международного агентства по возобновляемым источникам энергии (IRENA), объем инвестиций в ИИ-решения для солнечной энергетики может достигнуть 380 миллиардов долларов к 2030 году. Этот рынок является перспективным и конкурентным, что делает исследования в данной области актуальными как с научной, так и с практической точки зрения.