2-е издание (добавлены главы 7, 8, 9)
ПРЕДИСЛОВИЕ
В учебном пособии под интеллектуальными электрическими сетями понимаются такие электросети, для управления которыми используются программные средства, основанные на методах искусственного интеллекта (ИИ). Рассматривается, в основном, управление «через человека» – диспетчерское управление. Интеллектуальные программы при таком подходе обеспечивают компьютерную поддержку диспетчерских решений. Это ни в коей мере не исключает других возможных применений ИИ в электросетях, но эти возможности остаются за рамками данного пособия.
Для «интеллектуальных» электрических сетей рассмотрены основанные на методах ИИ программные средства, выполняющие новые функции и повышающие уровень компьютерной поддержки диспетчерских решений.
Учитывая, что одна из целей построения интеллектуальных сетей – обеспечение восстановления после аварий, основное внимание в книге уделяется проблемам диагностики нештатных ситуаций, интеллектуальному мониторингу состояний электрических сетей, планированию послеаварийного восстановления электроснабжения. Подробно рассмотрен новый вид программного тренажера для диспетчеров электрических сетей – тренажер анализа нештатных ситуаций.
В рамках использования ИИ рассмотрена многоагентная структура интеллектуальной автоматизированной структуры диспетчерского управления.
Рассмотрена также задача анализа аварий и возможность формирования (на основе данных оперативно-информационного комплекса) оперативной справки об аварии в энергосистеме.
Рассмотрена организация расследований технологических нарушений и аварий на подстанциях (с примерами протоколов расследования).
Вводится понятие «объемного» принятия решений, отражающее участие в принятии решений групп специалистов, обладающих различными компетенциями. При этом используется концепция экспертной системы с «доской объявлений».
Для облегчения преобразования эксплуатационного опыта технологов в формализмы естественно-языковой экспертной системы рассмотрена возможность применения концепции экстремального программирования.
Для определенности при изложении в данном пособии предполагается применение экспертной системы (оболочки) МИМИР, так как эта система имеет ряд успешных применений в электроэнергетических задачах.
Изложение в книге сопровождается множеством примеров в форме протоколов работы реальных интеллектуальных систем.
Учебное пособие предназначено для студентов магистратуры электроэнергетических специальностей, обучающихся по направлению «Электроэнергетика и электротехника» и магистрантов направления «Электроэнергетика и электротехника», профили «Электроэнергетические системы и сети» при изучении дисциплины «Информационно-измерительные системы», специалистов технических оперативных служб предприятий энергетических систем, электрических и распределительных сетей и электрических станций, филиалов ПАО «Россети», ПАО «ФСК ЕЭС», слушателей курсов повышения квалификации, а также студентов электроэнергетических специальностей. служб предприятий электрических и распределительных сетей и электрических станций, слушателей курсов повышения квалификации электроэнергетического профиля. Севастопольского госуниверситета и ряду других специализаций. Пособие соответствует также специализациям «Активно-адаптивные системы электроснабжения» СПбПУ Петра Великого 2.13.04.02Интеллектуальные системы энергоснабжения.
Глава 1. ПРОГРАММНЫЕ СРЕДСТВА ДЛЯ ПОДДЕРЖКИ ДИСПЕТЧЕРСКИХ РЕШЕНИЙ
Однажды много лет назад Декарт, взглянув через зарешеченное окно на росший во дворе дуб, понял, что с помощью оконной решетки можно задать числами положения частей дуба: ствола, ветвей, листьев, – оцифровать дуб! Уменьшая размер ячеек решетки, можно получить оцифровки дуба, содержащие все больше и больше деталей. Декарт воскликнул: «Эврика!» и создал прямоугольную декартову систему координат. Это был момент величайшего значения в математизации физики и начало цифровизации. Любой материальный объект мог быть закодирован с помощью декартовых координат. Описание движения этого объекта могло быть представлено в виде функциональных преобразований декартовых координат. Можно сказать, что был создан числовой образ физического пространства. Сегодняшняя цифровизация началась именно с этого события.