Теория пределов является фундаментальной частью математического анализа и играет ключевую роль в понимании концепций производной и интеграла. Если по существу, то предел функции описывает ее поведение, когда аргумент функции стремится к определенному значению.
Решению практических задач и выполнению практических заданий по нахождению пределов функций традиционными методами и с помощью нейросетей и посвящена данная книга.
1.Выполнение практических заданий
1. Найти предел функции f(x) = (x^2 +1)/( x^2 – 1) при x стремящегося к бесконечности.
Нейросеть Маша (СhatGPT-4)
Чтобы найти предел функции ( f(x) = \frac{x^2 + 1}{x^2 – 1} ) при ( x ) стремящемся к бесконечности, можно выполнить следующие шаги:
Разделим числитель и знаменатель на ( x^2 ): [ f(x) = \frac{x^2 + 1}{x^2 – 1} = \frac{1 + \frac{1}{x^2}}{1 – \frac{1}{x^2}} ]
При ( x \to \infty ), члены ( \frac{1}{x^2} ) стремятся к 0: [ f(x) \to \frac{1 + 0}{1 – 0} = \frac{1}{1} = 1 ]
Таким образом, предел функции ( f(x) ) при ( x ) стремящемся к бесконечности равен:
[\lim_{x \to \infty} f(x) = 1]. Ответ: 1.
Традиционное решение
lim (x→к бесконечности)f(x)= lim (x→к бесконечности)(x^2 +1)/( x^2 – 1)=
= lim (x→к бесконечности)(x^2/x^2 + 1/x^2)/( x^2/x^2 – 1/x^2)I числитель и знаменатель функции делим на x^2 I= (1 + 0)/(1 – 0) = 1/1 = 1. Ответ: 1.
2.Найти предел функции f(x) = 4x +2x^2 при x стремящемся к 1.
Нейросеть Маша (СhatGPT-4)
Чтобы найти предел функции \( f(x) = 4x + 2x^2 \) при \( x \) стремящемся к 1, подставим 1 в функцию:
\[f(1) = 4(1) + 2(1)^2 = 4 + 2 = 6\]
Таким образом, предел функции:
\[\lim_{x \to 1} f(x) = 6\].Ответ: 6.
3.Найти предел функции f(x) = (x^2 – 3x +2)/( 2x^2 – 5x +2) при x стремящемся к 2.
Нейросеть Маша (СhatGPT-4)
Чтобы найти предел функции \[f(x) = \frac{x^2 – 3x + 2}{2x^2 – 5x + 2}\]
при \( x \) стремящемся к 2, сначала подставим 2 в функцию:
\[f(2) = \frac{2^2 – 3(2) + 2}{2(2^2) – 5(2) + 2} = \frac{4 – 6 + 2}{8 – 10 + 2} = \frac{0}{0}\]
При подстановке получаем неопределенность \( \frac{0}{0} \). Необходимо упростить выражение.
Разложим числитель и знаменатель на множители:
1. Числитель: \( x^2 – 3x + 2 = (x – 1)(x – 2) \).
2. Знаменатель: \( 2x^2 – 5x + 2 = (2x – 1)(x – 2) \).
Теперь подставим в предел:
\[f(x) = \frac{(x – 1)(x – 2)}{(2x – 1)(x – 2)}\]
Сократим \( (x – 2) \):\[f(x) = \frac{x – 1}{2x – 1}\]
Теперь найдем предел, подставив \( x = 2 \):
\[\lim_{x \to 2} f(x) = \frac{2 – 1}{2(2) – 1} = \frac{1}{4 – 1} = \frac{1}{3}\]
Таким образом, предел функции равен:
\[\lim_{x \to 2} f(x) = \frac{1}{3}\].Ответ: 1/3.
Традиционное решение
lim (x→2)f(x)= lim (x→2)(x^2 – 3x+2)/( 2x^2 – 5x +2)= lim (x→2)((x – 1)(x – 2)/( 2x – 1)(x – 2)) =
= I числитель и знаменатель функции сокращаем на (x -2) I= (x – 1)/(2x – 1) = 1/3. Ответ: 1/3.
4.Найти предел функции f(x) = ((1+x)^(1/2) – (1- x)^(1/2))/3x при x стремящемся к 0.
Нейросеть Маша (СhatGPT-4)
Чтобы найти предел функции \[f(x) = \frac{\sqrt{1+x} – \sqrt{1-x}}{3x}\]
при \( x \) стремящемся к 0, подставим 0 в функцию:
\[f(0) = \frac{\sqrt{1+0} – \sqrt{1-0}}{3 \cdot 0} = \frac{1 – 1}{0} = \frac{0}{0}\]
При подстановке получаем неопределенность \( \frac{0}{0} \). Чтобы решить это, применим метод умножения на сопряженное выражение:
Умножим числитель и знаменатель на \( \sqrt{1+x} + \sqrt{1-x} \):
\[f(x) = \frac{(\sqrt{1+x} – \sqrt{1-x})(\sqrt{1+x} + \sqrt{1-x})}{3x(\sqrt{1+x} + \sqrt{1-x})}\]
В числителе получаем:
\[(\sqrt{1+x})^2 – (\sqrt{1-x})^2 = (1+x) – (1-x) = 2x\]
Таким образом, выражение становится:
\[f(x) = \frac{2x}{3x(\sqrt{1+x} + \sqrt{1-x})} = \frac{2}{3(\sqrt{1+x} + \sqrt{1-x})}\]
Теперь можем найти предел:
\[\lim_{x \to 0} f(x) = \frac{2}{3(\sqrt{1+0} + \sqrt{1-0})} = \frac{2}{3(1 + 1)} = \frac{2}{6} = \frac{1}{3}\]