Перед вами восемь перенумерованных пней (рис. 1). На пнях 1 и 3 сидят кролики, на пнях 6 и 8 – белки. И белки, и кролики почему-то недовольны своими местами и хотят обменяться пнями: белки желают сидеть на местах кроликов, а кролики – на местах белок. Попасть на новое место они могут, прыгая с пня на пень по следующим правилам:
1) прыгать с пня на пень можно только по тем линиям, которые показаны на рисунке; каждый зверек может делать несколько прыжков кряду;
2) два зверька на одном пне поместиться не могут, поэтому прыгать можно только на свободный пень. Имейте также в виду, что зверьки желают обменяться местами за наименьшее число прыжков. Впрочем, меньше чем 16 прыжками им не обойтись.
Как же они это сделают?
Рис. 1. На полянке.
Мне пришлось как-то целый вечер ждать поезд на маленькой станции. Не было ни книг, ни газет, ни собеседников, и я не знал, чем наполнить часы ожидания. К счастью, я вспомнил об одной занимательной задаче, которая незадолго до того попалась мне в иностранном журнале. Задача состояла в следующем.
Рис. 2. Стол, накрытый к чаю.
Стол разграфлен на 6 квадратов, в каждом из которых, кроме одного, помещается какой-нибудь предмет. Я воспользовался чайной посудой и разместил по квадратам чашки, чайник и молочник, как показано на рис. 2.
Суть задачи в том, чтобы поменять местами чайник и молочник, передвигая предметы из одного квадрата в другой по определенным правилам, а именно:
1) предмет перемещать только в тот квадрат, который окажется свободным;
2) нельзя передвигать предметы по диагонали квадрата;
3) нельзя переносить один предмет поверх другого;
4) нельзя также помещать в квадрат более одного предмета, даже временно.
Эта задача имеет много решений, но интересно найти самое короткое, т. е. обменять местами чайник и молочник за наименьшее число ходов.
В поисках решения незаметно прошел вечер; я покидал станцию, так и не найдя кратчайшего решения.
Может быть, читатели найдут его? На всякий случай предупреждаю, что искомое наименьшее число ходов все же больше дюжины, хотя и меньше полутора дюжин.
На нашем чертеже изображен план автомобильного гаража с помещениями для двенадцати автомобилей. Но помещение так неудобно, так мало, что у заведующего гаражом постоянно возникают затруднения. Вот одно из них. Предположим, что восемь автомобилей стоят так, как показано на рис. 3. Автомобили 1,2, 3 и 4 необходимо поменять местами с автомобилями 5, 6, 7 и 8.