1.1 Понятие машинного обучения. Математические основы ML
Понятие машинного обучения
Под термином «машинное обучение» (Machine learning- Ml) принято понимание общего термина для обозначения средства, предназначенного для решения проблем, для которых разрабатывать алгоритмы специалистами по программированию могло бы оказаться чрезмерно затратно. Решения проблем осуществляются в итоге с опорой на оказание машинам помощи в открытии «открытии» своих «собственные» алгоритмов без необходимости получения ими явных указаний, что им делать, используя любые разработанные человеком алгоритмы.
Применение Ml-подходов имело место в таких направлениях (или областях), где осуществление разработки алгоритмов для выполнения нуждающихся в выполнении задач чрезмерно недешево. Это такие направления (или области), как медицина, сельское хозяйство, фильтрация электронной почты, распознавание речи, компьютерное зрение, большие языковые модели.
Для машинного обучения имеет место существование множества приложений. Этика машинного обучения становится отдельной областью исследований и должна быть интегрирована в команды разработчиков машинного обучения.
Математические основы ML
Если говорить о математических основах ML, то ими обеспечиваются методы математической оптимизации (это из области математического программирования). Параллельной (смежной) областью исследований, в которой основное внимание уделяется исследовательскому анализу данных с помощью «обучения без учителя», является интеллектуальный анализ данных, предназначенный для решения бизнес-задач, известных как «прогнозная аналитика». Не все ML базируется на статистике, однако надо принимать во внимание, что вычислительную статистику считают значимым источником методов в рассматриваемой области.
1.2 Преследуемые современным Ml цели. Машинное обучение как область искусственного интеллекта
Преследуемые современным Ml цели
Целей, преследуемых современным Ml, насчитывается две. Во-первых, это цель классификации данных на базе разработанных моделей, во-вторых – цель прогнозирования будущих результатов с опорой на эти модели. Ml-алгоритм для торговли акциями может информировать трейдера о будущих потенциальных прогнозах. Для классификации данных о родинках возможно использование компьютерного зрения в сочетании с контролируемым обучением, чтобы научить его классифицировать родинки, разделяя их на злокачественные и не злокачественные.
Машинное обучение как область искусственного интеллекта
Как научная деятельность, Ml возникло в результате поисков в области искусственного интеллекта (Artificial Intelligence – AI). На заре AI как академической дисциплины некоторые из исследователей были заинтересованы в том, чтобы происходило обучение машин на данных. Они пытались подойти к проблеме с помощью различных методов, а также того, что было названо «нейронными сетями»; это были в основном перцептроны и иные модели, которые в более позднее время оказались переосмыслением обобщенных линейных статистических моделей. Также применение находили (особенно в автоматизированной медицинской диагностике) вероятностные рассуждения.
Однако имел место рост внимания к логическому, базирующемуся на знаниях подходу. Это спровоцировало раскол между AI и Ml. Вероятностные системы столкнулись с проблемами (теоретического и практического плана) в такой области, как область сбора и представления данных.