Меня пригласили на ужин в дорогой ресторан: предполагалась встреча с генеральным директором крупной социальной сети и его женой. Я нервничала, оказавшись за столом роскошного ресторана, типичного дорогого заведения Кремниевой долины, размышляя, что принесет этот вечер. Организовать встречу помог один из моих друзей, который был знаком с женой генерального директора. Друг знал о моей деятельности по улучшению преподавания математики и решил, что пообщаться с таким руководителем будет полезно. После нескольких лет жизни и работы в Кремниевой долине я поняла, что подобная коммуникация – часть структуры этого региона и одна из причин развития инноваций и роста производительности.
Начало ужина обескураживало. Раньше я не сталкивалась ни с чем подобным: генеральный директор вел себя так, словно больше за столом никого не было. Он постоянно разговаривал по телефону с коллегами и деловито составлял рабочие планы, вынув из портфеля стопку рабочих документов. Такое поведение, намеренное или нет, заставляло всех нас ощущать собственную незначительность. Его жена выглядела смущенной и раз за разом бросала взгляд в сторону импровизированного офиса мужа на углу нашего стола. Это продолжалось, пока не принесли еду, и директор вынужденно закончил работу. В середине ужина он признал мое существование. Оторвав глаза от еды, генеральный директор пристально посмотрел на меня и с неодобрением спросил: «Значит, вы считаете, что преподавание математики стоит менять?»
Без малейшей паузы он принялся рассказывать, как хорошо у него было с математикой, перечисляя свои многочисленные достижения в школе и в колледже. В этот момент я поняла, что разговор будет непростым. Я многие годы пыталась улучшить преподавание этого проблемного у многих предмета и знала, что люди, добившиеся в нем успеха, обычно считают, что ничего менять не нужно. В их представлении математика – дело сложное, а их собственные успехи доказывают их блестящие способности. Но вам следует знать обо мне одну вещь: я готова бороться за то, что считаю реальными проблемами, с которыми сталкиваются многие учащиеся. Я решила познакомить директора с другой математикой.
Рис. 1.1. Автор демонстрирует предложенную Рут Паркер модель увеличивающихся фигур, которая показана на рис. 1.2.
Я рассказала, что нейробиологи установили, каким образом наш мозг обрабатывает математические данные, и почему важен тот факт, что при математическом мышлении мы задействуем различные участки мозга, особенно зрительные пути. Он согласился взглянуть на диаграммы, которые я часто использую при знакомстве с новыми людьми. Я выбрала одну из своих любимых, предложенную преподавателем математики Рут Паркер (рис. 1.1 и 1.2).
Рис. 1.2. Модель увеличивающихся фигур Рут Паркер.
Обычно такие диаграммы используются, чтобы учащиеся задумались о закономерностях увеличения числа клеток и сумели выразить их с помощью алгебраических символов. На уроках математики ученикам часто задают вопросы по типу: «Сколько квадратиков будет на фигуре 10? А на фигуре 100? А на фигуре n?» Это хорошие вопросы, которые становятся намного понятней, когда задействовано визуальное мышление. Обычно преподаватель ожидает, что ученики нарисуют таблицу с числами, а затем будут глазеть на нее, пока не заметят какую-нибудь связь. Здесь можно обнаружить числовую закономерность: чтобы найти количество квадратиков фигуры, достаточно взять ее номер (например, 2), прибавить к нему единицу (3), а затем возвести это число в квадрат и получить 9. Прибавление единицы и возведение суммы в квадрат позволяет найти общее количество квадратиков в любой из фигур. Алгебраически эту закономерность можно выразить как (n + 1)².